3 resultados para SURFACE PROTEIN

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bio-molecular interactions exist ubiquitously in all biological systems. This dissertation project was to construct a powerful surface plasmon resonance (SPR) sensor. The SPR system is used to study bio-molecular interactions in real time and without labeling. Surface plasmon is the oscillation of free electrons in metals coupled with surface electromagnetic waves. These surface electromagnetic waves provide a sensitive probe to study bio-molecular interactions on metal surfaces. This project resulted in the successful construction and optimization of a homemade SPR sensor and the development of several new powerful protocols to study bio-molecular interactions. It was discovered through this project that the limitations of earlier SPR sensors are related not only to the instrumentation design and operating procedures, but also to the complex behaviors of bio-molecules on sensor surfaces that were very different from that in solution. Based on these discoveries the instrumentation design and operating procedures were fully optimized. A set of existing sensor surface treatment protocols were tested and evaluated and new protocols were developed in this project. The new protocols have demonstrated excellent performance to study biomolecular interactions. The optimized home-made SPR sensor was used to study protein-surface interactions. These protein-surface interactions are responsible for many complex organic cell activities. The co-existence of different driving forces and their correlation with the structure of the protein and the surface make the understanding of the fundamental mechanism of protein-surface interactions a very challenging task. Using the improved SPR sensor, the electrostatic interaction and hydrophobic interaction were studied separately. The results of this project directly confirmed the theoretical predictions for electrostatic force between the protein and surface. In addition, this project demonstrated that the strength of the protein-surface hydrophobic interaction does not solely depend on the hydrophobicity as reported earlier. Surface structure also plays a significant role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) in groundwater and surface water samples from the Florida coastal Everglades were studied using excitation–emission matrix fluorescence modeled through parallel factor analysis (EEM-PARAFAC). DOM in both surface and groundwater from the eastern Everglades S332 basin reflected a terrestrial-derived fingerprint through dominantly higher abundances of humic-like PARAFAC components. In contrast, surface water DOM from northeastern Florida Bay featured a microbial-derived DOM signature based on the higher abundance of microbial humic-like and protein-like components consistent with its marine source. Surprisingly, groundwater DOM from northeastern Florida Bay reflected a terrestrial-derived source except for samples from central Florida Bay well, which mirrored a combination of terrestrial and marine end-member origin. Furthermore, surface water and groundwater displayed effects of different degradation pathways such as photodegradation and biodegradation as exemplified by two PARAFAC components seemingly indicative of such degradation processes. Finally, Principal Component Analysis of the EEM-PARAFAC data was able to distinguish and classify most of the samples according to DOM origins and degradation processes experienced, except for a small overlap of S332 surface water and groundwater, implying rather active surface-to-ground water interaction in some sites particularly during the rainy season. This study highlights that EEM-PARAFAC could be used successfully to trace and differentiate DOM from diverse sources across both horizontal and vertical flow profiles, and as such could be a convenient and useful tool for the better understanding of hydrological interactions and carbon biogeochemical cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane-like structure formed by surfactant molecules of didodecyldimethylammonium bromide (DDAB) on both HOPG and gold electrodes were studied with AFM and SPR techniques. The study shows that the thickness of the adsorbed layer of DDAB is strongly dependent on the concentration of the vesicle solution. We have also investigated the adsorption of redox protein, Cytochrome c, on graphite electrode with in situ tapping mode AFM. The protein adsorbs spontaneously onto the electrode covered with an adsorbed phosphate layer and forms a uniform monolayer. The adsorbed protein exhibits a reversible electron transfer at 0.17 V (Ag/AgCI) once the electrode potential has been increased to 0.75V. Using surface plasmon resonance spectroscopy we have measured subtle conformational change in protein, Cyt c, due to electron transfer of a single electron on MPA-coated gold electrode. The electron transfer induced change in the resonant angle is about 0.006 deg., which corresponds to ~ 0.2 A decreases in the thickness. This is consistent with that reduced state is more compact than the oxidized state.